孙聊新-中国科学院大学-UCAS


本站和网页 http://people.ucas.ac.cn/~0046204 的作者无关,不对其内容负责。快照谨为网络故障时之索引,不代表被搜索网站的即时页面。

孙聊新-中国科学院大学-UCAS
[中文]
[English]
教育背景
工作经历
专利与奖励
出版信息
科研活动
基本信息
孙聊新 男 硕导 中国科学院上海技术物理研究所电子邮件: sunlx@mail.sitp.ac.cn通信地址: 上海市虹口区玉田路500号邮政编码:
招生信息
招生专业
070207-光学070205-凝聚态物理
招生方向
微纳半导体光学
教育背景
2004-09--2009-07 复旦大学 博士
工作经历
工作简历
2012-11~2014-01,美国宾西法尼亚大学材料工程系, 博士后2009-07~现在, 中国科学院上海技术物理研究所, 助研,副研
专利与奖励
专利成果
[1] 孙聊新, 张健, 朱莉晴, 张波, 陆卫. 用于一维和二维纳米材料的微型单轴应变施加装置.&nbspCN:&nbspCN212539985U,&nbsp2021-02-12.[2] 陆卫, 郑伟波, 王少伟, 刘方武, 孙聊新, 丁昆, 江舸, 张涛, 黄行许, 孙浩, 袁永春, 张寅. 基于CRISPR技术的封闭式全自动核酸提取检测系统.&nbspCN:&nbspCN111575176A,&nbsp2020-08-25.[3] 陆卫, 郑伟波, 王少伟, 刘方武, 孙聊新, 丁昆, 张涛, 孙浩, 袁永春, 张寅, 田清, 谢雷英. 一种基于PCR扩增的一体化核酸提取和扩增检测系统.&nbspCN:&nbspCN111534428A,&nbsp2020-08-14.[4] 陆卫, 郑伟波, 王少伟, 刘方武, 孙聊新, 丁昆, 张涛, 孙浩, 袁永春, 张寅, 田清, 谢雷英. 基于等温扩增的一体化核酸提取和扩增检测系统.&nbspCN:&nbspCN111534429A,&nbsp2020-08-14.[5] 孙聊新, 张健, 朱莉晴, 张波, 陆卫. 一种用于一维和二维纳米材料的微型单轴应变施加装置.&nbspCN:&nbspCN111442996A,&nbsp2020-07-24.[6] 袁小文, 陈飞良, 王玘, 孙聊新, 王少伟, 张波, 陆卫. 一种基于数字微反射镜的便携式高光谱重构器.&nbspCN:&nbspCN104359555A,&nbsp2015-02-18.[7] 王玘, 袁小文, 孙聊新, 张波, 陆卫. 基于显微镜的激光双调制反射光谱检测系统.&nbspCN:&nbspCN204086126U,&nbsp2015-01-07.[8] 王玘, 袁小文, 孙聊新, 张波, 陆卫. 一种基于显微镜的激光双调制反射光谱检测系统.&nbspCN:&nbspCN104181110A,&nbsp2014-12-03.[9] 袁小文, 孙聊新, 张波, 陆卫. 光学微腔的光子等频图和能带结构一次成像装置.&nbspCN:&nbspCN203965312U,&nbsp2014-11-26.[10] 袁小文, 孙聊新, 张波, 陆卫. 一种光学微腔的光子等频图和能带结构一次成像装置.&nbspCN:&nbspCN104034669A,&nbsp2014-09-10.
出版信息
发表论文
[1] Yang, Shuai, Lu, Xinle, Zhang, Jian, Wang, Hailong, Sun, Liaoxin. Reversible tuning from multi-mode laser to single-mode laser in coupled nanoribbon cavity. APPLIED PHYSICS LETTERS[J]. 2021, 118(17):&nbsphttp://dx.doi.org/10.1063/5.0046518.[2] Zhang, Shukui, Jiao, Hanxue, Wang, Xudong, Chen, Yan, Wang, Hailu, Zhu, Liqing, Jiang, Wei, Liu, Jingjing, Sun, Liaoxin, Lin, Tie, Shen, Hong, Hu, Weida, Meng, Xiangjian, Pan, Dong, Wang, Jianlu, Zhao, Jianhua, Chu, Junhao. Highly Sensitive InSb Nanosheets Infrared Photodetector Passivated by Ferroelectric Polymer. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(51):&nbsphttp://dx.doi.org/10.1002/adfm.202006156.[3] Zhao, Binbin, Zhu, Liqing, Sun, Liaoxin, Wang, Shaowei, Lu, Jian, Zhang, Jian, Han, Qi, Dong, Hongxing, Tang, Bing, Zhou, Beier, Liu, Feng, Shen, Xuechu, Lu, Wei. Strong fluorescence blinking of large-size all-inorganic perovskite nano-spheres. NANOTECHNOLOGY[J]. 2020, 31(21):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000519973900001.[4] Zhu, Liqing, Yu, Zhaopeng, Sun, Liaoxin, Zhou, Beier, Dong, Hongxing, Zhang, Shukui, Wang, Jianlu, Zhang, Bo, Lin, Fangting, Shen, Xuechu, Lu, Wei. Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. APPLIED PHYSICS LETTERS[J]. 2020, 116(2):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000518029000023.[5] Yu, Zhaopeng, Sun, Liaoxin, Lu, Yue, Sun, Yan, Zhang, Bo, Xu, Jingcheng, Shen, Xuechu, Lu, Wei. Realizing single-mode lasing of cadmium selenide nanoribbons with strain engineering. APPLIED PHYSICS LETTERS[J]. 2020, 116(19):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000543738300002.[6] Xiong, Hui, Sun, Liaoxin. Design of Diffractive Optical Elements by Direct and Indirect Construction of Diffraction Pattern: A Comparative Study. JOURNAL OF ELECTRONIC PACKAGING[J]. 2020, 142(4):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000591576500008.[7] Han, Qi, Wang, Jun, Lu, Jian, Sun, Liaoxin, Lyu, Feiyi, Wang, Hu, Chen, Zhanghai, Wang, Zhongyang. Transition Between Exciton-Polariton and Coherent Photonic Lasing in All-Inorganic Perovskite Microcuboid. ACS PHOTONICS[J]. 2020, 7(2):&nbsp454-462, https://www.webofscience.com/wos/woscc/full-record/WOS:000515214200018.[8] Zhao, Xinchao, Yan, Yanhong, Cui, Zhuangzhuang, Liu, Feng, Wang, Shaowei, Sun, Liaoxin, Chen, Yuwei, Lu, Wei. Realization of strong coupling between 2D excitons and cavity photons at room temperature. OPTICS LETTERS[J]. 2020, 45(24):&nbsp6571-6574, http://dx.doi.org/10.1364/OL.401330.[9] Chen, Lulu, Sun, Liaoxin, Dong, Hongxing, Mou, Nanli, Zhang, Yaqiang, Li, Qisong, Jiang, Xiongwei, Zhang, Long. Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC ADVANCES[J]. 2020, 10(9):&nbsp5146-5151, https://www.webofscience.com/wos/woscc/full-record/WOS:000516552100029.[10] Liu, Xingxing, Li, Zhiwei, Wen, Zhengji, Wu, Mingfei, Lu, Jialiang, Chen, Xu, Zhao, Xinchao, Wang, Tao, Ji, Ruonan, Zhang, Yafeng, Sun, Liaoxin, Zhang, Bo, Xu, Hao, Zhou, Jing, Hao, Jiaming, Wang, Shaowei, Chen, Xiaoshuang, Dai, Ning, Lu, Wei, Shen, Xuechu. Large-area, lithography-free, narrow-band and highly directional thermal emitter. NANOSCALE[J]. 2019, 11(42):&nbsp19742-19750, https://www.webofscience.com/wos/woscc/full-record/WOS:000498838100010.[11] Tang, Bing, Hu, Yingjie, Dong, Hongxing, Sun, Liaoxin, Zhao, Binbin, Jiang, Xiongwei, Zhang, Long. An All-Inorganic Perovskite-Phase Rubidium Lead Bromide Nanolaser. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(45):&nbsp16134-16140, [12] Zhang, Shukui, Wang, Xudong, Chen, Yan, Wu, Guangjian, Tang, Yicheng, Zhu, Liqing, Wan, Haoliang, Jiang, Wei, Sun, Liaoxin, Lin, Tie, Shen, Hong, Hu, Weida, Ge, Jun, Wang, Jianlu, Meng, Xiangjian, Chu, Junhao. Ultrasensitive Hybrid MoS2-ZnCdSe Quantum Dot Photodetectors with High Gain. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(26):&nbsp23667-23672, [13] Weng, Qianchun, Panchal, Vishal, Lin, KuanTing, Sun, Liaoxin, Kajihara, Yusuke, Tzalenchuk, Alexander, Komiyama, Susumu. Comparison of active and passive methods for the infrared scanning near-field microscopy. APPLIED PHYSICS LETTERS[J]. 2019, 114(15):&nbsp[14] Pan, Xiaohang, Xu, Hao, Gao, Yanqing, Zhang, Yafeng, Sun, Liaoxin, Li, Dan, Wen, Zhengji, Li, Shimin, Yu, Weiwei, Huang, Zhiming, Wang, Jianlu, Zhang, Bo, Sun, Yan, Sun, Jinglan, Meng, Xiangjian, Chen, Xin, Dagens, Beatrice, Hao, Jiaming, Shen, Yue, Dai, Ning, Chu, Junhao. Spatial and Frequency Selective Plasmonic Metasurface for Long Wavelength Infrared Spectral Region. ADVANCED OPTICAL MATERIALS[J]. 2018, 6(20):&nbsphttp://www.corc.org.cn/handle/1471x/2170824.[15] Tang, Bing, Sun, Liaoxin, Zheng, Weihao, Dong, Hongxing, Zhao, Binbin, Si, Quanquan, Wang, Xiaoxia, Jiang, Xiongwei, Pan, Anlian, Zhang, Long. Ultrahigh Quality Upconverted Single-Mode Lasing in Cesium Lead Bromide Spherical Microcavity. ADVANCED OPTICAL MATERIALS[J]. 2018, 6(20):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000447743000009.[16] Zhou, Beier, Dong, Hongxing, Jiang, Mingming, Zheng, Weihao, Sun, Liaoxin, Zhao, Binbin, Tang, Bing, Pan, Anlian, Zhang, Long. Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(43):&nbsp11740-11748, https://www.webofscience.com/wos/woscc/full-record/WOS:000449702600028.[17] Sun, Fangfang, Sun, Liaoxin, Zhang, Bo, Wang, Hailong. Spatially resolved surface-related exciton polariton dynamics in a single ZnO tetrapod. SOLID STATE COMMUNICATIONS[J]. 2018, 270: 107-110, http://dx.doi.org/10.1016/j.ssc.2017.12.003.[18] Wang, Shuxia, Wei, Wei, Huang, Tiantian, Zhang, Tianning, Chen, Zhimin, Sun, Liaoxin, Xia, Hui, Li, Tianxin, Chen, Xin, Chen, Xiaoshuang, Lu, Wei, Dai, Ning. Selected-Area Chemical Nanoengineering of Vanadium Dioxide Nanostructures Through Nonlithographic Direct Writing. ADVANCED MATERIALS INTERFACES[J]. 2018, 5(21):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000449562000003.[19] Du, Lei, Yang, Liu, Hu, Zhiting, Zhang, Jiazhen, Huang, Chunlai, Sun, Liaoxin, Wang, Lin, Wei, Dacheng, Chen, Gang, Lu, Wei. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates. NANOTECHNOLOGY[J]. 2018, 29(21):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000428922100006.[20] Sun, Fangfang, Sun, Liaoxin, Zhang, Bo, Chen, Gang, Wang, Hailong, Shen, Xuechu, Lu, Wei. Optical Waveguide of Buckled CdS Nanowires Modulated by Strain-Engineering. ACS PHOTONICS[J]. 2018, 5(3):&nbsp746-751, https://www.webofscience.com/wos/woscc/full-record/WOS:000428356400012.[21] Tang, Bing, Dong, Hongxing, Sun, Liaoxin, Zheng, Weihao, Wang, Qi, Sun, Fangfang, Jiang, Xiongwei, Pan, Anlian, Zhang, Long. Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS NANO[J]. 2017, 11(11):&nbsp10681-10688, https://www.webofscience.com/wos/woscc/full-record/WOS:000416878100010.[22] Wang, Qi, Sun, Liaoxin, Zhang, Bo, Chen, Changqing, Shen, Xuechu, Lu, Wei. Direct observation of strong light-exciton coupling in thin WS2 flakes. OPTICS EXPRESS[J]. 2016, 24(7):&nbsp7151-7157, [23] Wang, Qi, Sun, Liaoxin, Lu, Jian, Ren, MingLiang, Zhang, Tianning, Huang, Yan, Zhou, Xiaohao, Sun, Yan, Zhang, Bo, Chen, Changqing, Shen, Xuechu, Agarwal, Ritesh, Lu, Wei. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons. SCIENTIFIC REPORTS[J]. 2016, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000376464400001.[24] Yuan, Xiaowen, Wang, Qi, Sun, Liaoxin, Li, Senlin, Chen, C Q, Luo, X D, Zhang, Bo. Competitive emissions of InAs (QDs)/GaInAsP/InP grown by GSMBE. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING[J]. 2015, 119(1):&nbsp193-199, https://www.webofscience.com/wos/woscc/full-record/WOS:000351171600025.[25] Wang, Yinglei, Hu, Tao, Xie, Wei, Sun, Liaoxin, Zhang, Long, Wang, Jian, Gu, Jie, Wu, Lin, Wang, Jun, Shen, Xuechu, Chen, Zhanghai. Polarization-coupled polariton pairs in a birefringent microcavity. PHYSICAL REVIEW B[J]. 2015, 91(12):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000352196700001.[26] Yuan, Xiaowen, Wang, Qi, Zhu, X F, Shi, Lei, Zhao, Qiang, Sun, Liaoxin, Chen, Changqing, Zhang, Bo. High Q factor propagating plasmon modes based on low-cost metals. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2014, 47(8):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000331902900010.[27] 袁小文, 王玘, 陈长清, 张波, 孙聊新. 基于阿贝正弦条件的光子等频图和能带结构测试系统. 光学学报[J]. 2014, 34(12):&nbsp1212004-1, [28] Sun, Liaoxin, Ren, MingLiang, Liu, Wenjing, Agarwal, Ritesh. Resolving Parity and Order of Fabry-Perot Modes in Semiconductor Nanostructure Waveguides and Lasers: Young's Interference Experiment Revisited. NANO LETTERS[J]. 2014, 14(11):&nbsp6564-6571, https://www.webofscience.com/wos/woscc/full-record/WOS:000345723800085.[29] 沈学础. Strong bound exciton-photon coupling in ZnO whispering gallery microcavity. OPTICS EXPRESS[J]. 2013, 21(25):&nbsp30227-30232, http://202.127.1.142/handle/181331/7722.[30] 沈学础. Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchical ZnO Fabry-Perot resonators. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(7):&nbsp3069-3074, http://ir.siom.ac.cn/handle/181231/10524.[31] 沈学础. Single-crystalline polyhedral In2O3 vertical Fabry-Perot resonators. APPLIED PHYSICS LETTERS[J]. 2011, 98(1):&nbsphttp://dx.doi.org/10.1063/1.3540650.[32] 沈学础. Facile Synthesis and Ultraviolet Lasing Properties a ZnO Microtubes. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(41):&nbsp17369-17373, http://dx.doi.org/10.1021/jp1047908.[33] 沈学础. Indium oxide octahedra optical microcavities. APPLIED PHYSICS LETTERS[J]. 2010, 97(22):&nbsphttp://dx.doi.org/10.1063/1.3521266.[34] 沈学础. Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod. OPTICS EXPRESS[J]. 2010, 18(15):&nbsp15371-15376,
科研活动
科研项目
( 1 )&nbsp应力调制下II-VI族纳米材料光学特性及光-物质强耦合研究, 主持, 国家级, 2015-01--2018-12( 2 )&nbsp青年促进会会员, 主持, 部委级, 2016-01--2019-12
2013 中国科学院大学,网络信息中心.