孙宇-中国科学院大学-UCAS


本站和网页 http://people.ucas.ac.cn/~0036449 的作者无关,不对其内容负责。快照谨为网络故障时之索引,不代表被搜索网站的即时页面。

孙宇-中国科学院大学-UCAS
[中文]
[English]
招生信息
教育背景
工作经历
专利与奖励
出版信息
科研活动
指导学生
基本信息
孙宇 男 博导 中国科学院上海生命科学研究院(人口健康领域)电子邮件: sunyu@sibs.ac.cn通信地址: 上海市徐汇区岳阳路320号邮政编码: 200031
招生信息
招生专业
071009-细胞生物学
招生方向
肿瘤微环境和肿瘤耐药细胞衰老与药物靶向
教育背景
2000-10--2005-02 加拿大戴侯斯大学(Dalhousie University) 生命科学系,哲学博士1996-09--1999-07 中国科学院遗传与发育生物学研究所 理学硕士1992-09--1996-07 烟台大学 生物化学与微生物学系,理学学士
工作经历
工作简历
2014-01~2018-12,中国科学院上海生科院/上海交大医学院健康科学研究所, 研究员,肿瘤耐药课题组组长,博士生导师2013-09~2013-12,美国VA医学中心(国家军事部门), 联邦研究员(PI, tenure track)2013-09~2013-12,美国华盛顿大学(UW),医学部, 先后为研究员、助理教授(均为PI)2006-09~2012-08,美国弗雷德哈青森癌症研究中心(FHCRC), 人类生物学部,先后为博士后、Staff Scientist2005-03~2006-08,加拿大英属哥伦比亚大学(UBC), 产科与妇科学系,博士后1999-09~2000-09,中国科学院遗传与发育生物学研究所, 助理研究员
社会兼职
2015-03-01-2016-12-31,上海交通大学2011系统生物医学协同创新中心, 特聘研究员2010-06-01-2016-12-31,美国临床肿瘤协会(ASCO), 会员2007-04-01-2016-12-31,美国癌症协会(AACR), 会员2005-10-01-2016-12-31,加拿大卵巢癌协会(OCC) 会, 会员2003-06-01-2016-12-31,美国细胞生物学协会(ASCB), 会员
专利与奖励
奖励信息
(1)&nbspTop Discoveries Award,&nbsp研究所(学校),&nbsp2013(2)&nbsp美国国防部DODCDMRP前列腺癌青年科学家奖 (PI),&nbsp一等奖,&nbsp部委级,&nbsp2012(3)&nbsp美国国防部DODCDMRP前列腺癌博士后奖,&nbsp部委级,&nbsp2008(4)&nbsp加拿大Patrick Lett 基金会特别奖,&nbsp研究所(学校),&nbsp2004(5)&nbsp加拿大Nova Scotia健康研究基金会奖,&nbsp省级,&nbsp2002
专利成果
[1] 孙宇, 许奇霞. 葡萄籽提取物在制备靶向清除肿瘤微环境衰老细胞及抑制肿瘤的药物中的用途.&nbsp202011140128.X,&nbsp2022-10-22.[2] 孙宇, 张博逸. 新型的肿瘤相关靶点Zscan4及其在抑制肿瘤中的应用.&nbspCN:&nbspCN109420169B,&nbsp2021-07-20.[3] 孙宇, 韩柳. 新型外泌体释放相关靶点及其在监测和抑制肿瘤中的应用.&nbspCN:&nbspCN112522394A,&nbsp2021-03-19.[4] 孙宇, 张博逸. 肿瘤微环境相关靶点TAK1及其在抑制肿瘤中的应用.&nbspCN:&nbspCN109420170B,&nbsp2021-03-02.[5] 孙宇, 许奇霞. 一种下调衰老相关分泌表型的抗衰老植物多酚类药物及其应用.&nbsp202110156372.3,&nbsp2021-02-04.[6] 孙宇, 韩柳. 一种下调衰老相关分泌表型的抗衰老组合药物及其应用.&nbsp202110159450.5,&nbsp2021-02-04.[7] 孙宇, 张博逸. 新型细胞衰老干预靶点及其在化疗抗癌中的靶向应用.&nbsp202010634135.9,&nbsp2020-07-02.[8] 孙宇, 陈斐. 丝氨酸蛋白酶抑制因子Kazal 1型在制备细胞衰老及肿瘤诊断或调控制剂中的应用.&nbspCN:&nbspCN111110849A,&nbsp2020-05-08.[9] 孙宇, 许奇霞. 双向调节素在制备细胞衰老及肿瘤的诊断或调控制剂中的应用.&nbspCN:&nbspCN111040032A,&nbsp2020-04-21.[10] 孙宇. 靶向组织微环境中衰老细胞的抗衰老药物D/A及其应用.&nbspCN:&nbspCN110934879A,&nbsp2020-03-31.[11] 孙宇. 靶向组织微环境中衰老细胞的抗衰老药物D/S及其应用.&nbspCN:&nbspCN110934873A,&nbsp2020-03-31.[12] 孙宇. 通过靶向mTOR操纵肿瘤微环境以消除肿瘤耐药性的方法及制剂.&nbspCN:&nbspCN106138045B,&nbsp2019-06-21.[13] 孙宇. 特异性靶向WNT16B的抗体在制备抗肿瘤药物中的应用.&nbsp中国:&nbspCN106139142A,&nbsp2016-11-23.
出版信息
发表论文
[1] Qiaoyu Fu, Ran Duan, Yu Sun, Qingfeng Li. Hyperbaric oxygen therapy for healthy aging: From mechanisms to therapeutics. Redox Biology. 2022, 53: [2] Boyi Zhang, Qilai Long, Shanshan Wu, Qixia Xu, Shuling Song, Liu Han, Min Qian, Xiaohui Ren, Hanxin Liu, Jing Jiang, Jianming Guo, Xiaoling Zhang, Xing Chang, Qiang Fu, Eric WF Lam, Judith Campisi, James L Kirkland, Yu Sun. KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype. Nature aging. 2021, 1(5):&nbsp454-472, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277122/.[3] Liu Han, Qilai Long, Shenjun Li, Qixia Xu, Boyi Zhang, Xuefeng Dou, Min Qian, Yannasittha Jiramongkol, Jianming Guo, Liu Cao, Y Eugene Chin, Eric WF Lam, Jing Jiang, Yu Sun. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer research. 2021, 80(16):&nbsp3383-3398, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611217/.[4] Xu, Qixia, Fu, Qiang, Li, Zi, Liu, Hanxin, Wang, Ying, Lin, Xu, He, Ruikun, Zhang, Xuguang, Ju, Zhenyu, Campisi, Judith, Kirkland, James L, Sun, Yu. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. NATURE METABOLISM[J]. 2021, 3(12):&nbsp1706-+, http://dx.doi.org/10.1038/s42255-021-00491-8.[5] Song, Shuling, Tchkonia, Tamara, Jiang, Jing, Kirkland, James L, Sun, Yu. Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. ADVANCED SCIENCEnull. 2020, 7(23):&nbsphttp://dx.doi.org/10.1002/advs.202002611.[6] Song, Shuling, Lam, Eric W F, Tchkonia, Tamara, Kirkland, James L, Sun, Yu. Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. TRENDS IN BIOCHEMICAL SCIENCESnull. 2020, 45(7):&nbsp578-592, http://dx.doi.org/10.1016/j.tibs.2020.03.008.[7] Han, Liu, Lam, Eric W F, Sun, Yu. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. MOLECULAR CANCERnull. 2019, 18(1):&nbsphttps://doaj.org/article/627dbc12ed57421dbe7b94dd4592dde1.[8] Munoz, Denise P, Yannone, Steven M, Daemen, Anneleen, Sun, Yu, VakarLopez, Funda, Kawahara, Misako, Freund, Adam M, Rodier, Francis, Wu, Jennifer D, Desprez, PierreYves, Raulet, David H, Nelson, Peter S, Veer, Laura J vant, Campis, Judith, Coppe, JeanPhilippe. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI INSIGHT[J]. 2019, 4(14):&nbsphttp://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000477572600003.[9] Xu, Qixia, Long, Qilai, Zhu, Dexiang, Fu, Da, Zhang, Boyi, Han, Liu, Qian, Min, Guo, Jianming, Xu, Jianmin, Cao, Liu, Chin, Eugene, Coppe, JeanPhilippe, Lam, Eric WF, Campisi, Judith, Sun, Yu. Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression. AGING CELL[J]. 2019, 18(6):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000485364300001.[10] Zhang, Boyi, Lam, Eric W F, Sun, Yu. Senescent cells: A new Achilles' heel to exploit for cancer medicine?. AGING CELLnull. 2019, 18(1):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000459022900029.[11] Fei Chen, Qilai Long, Da Fu, Dexiang Zhu, Yan Ji, Liu Han, Boyi Zhang, Qixia Xu, Bingjie Liu, Yan Li, Shanshan Wu, Chen Yang, Min Qian, Jianmin Xu, Suling Liu, Liu Cao, Y Eugene Chin, Eric WF Lam, JeanPhilippe Copp, Yu Sun. Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance. NATURE COMMUNICATIONS[J]. 2018, 9(1):&nbsphttps://doaj.org/article/12bdd1e0fbe44f6389a3b374958deb9b.[12] Sun, Yu, Coppe, JeanPhilippe, Lam, Eric W F. Cellular Senescence: The Sought or the Unwanted?. TRENDS IN MOLECULAR MEDICINEnull. 2018, 24(10):&nbsp871-885, http://dx.doi.org/10.1016/j.molmed.2018.08.002.[13] 潘雅娜, 王雪, 罗清. 肿瘤微环境影响肿瘤多药耐药的研究进展. 重庆医学. 2018, 47(4):&nbsp555-558, http://lib.cqvip.com/Qikan/Article/Detail?id=674411799.[14] Boyi Zhang, Da Fu, Qixia Xu, Xianling Cong, Chunyan Wu, Xiaoming Zhong, Yushui Ma, Zhongwei Lv, Fei Chen, Liu Han, Min Qian, Y Eugene Chin, Eric W F Lam, Paul Chiao, Yu Sun. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. NATURE COMMUNICATIONS[J]. 2018, 9(1):&nbsphttps://doaj.org/article/a37fabd8d83c4fc0a35e0b13fcba75e2.[15] GomezSarosi, Luis, Sun, Yu, Coleman, Ilsa, BianchiFrias, Daniella, Nelson, Peter S. DNA Damage Induces a Secretory Program in the Quiescent TME that Fosters Adverse Cancer Phenotypes. MOLECULAR CANCER RESEARCH[J]. 2017, 15(7):&nbsp842-851, https://www.webofscience.com/wos/woscc/full-record/WOS:000405293700006.[16] Han, L, Xu, J, Xu, Q, Zhang, B, Lam, E W F, Sun, Y. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies. MEDICINAL RESEARCH REVIEWSnull. 2017, 37(6):&nbsp1318-1349, [17] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?. Protein & Cell[J]. 2017, 9(8):&nbsp674-692, https://doaj.org/article/77e2cbeae15b40f7b2779fb4a27d6edf.[18] Sun, Y, Zhu, D, Chen, F, Qian, M, Wei, H, Chen, W, Xu, J. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. ONCOGENE[J]. 2016, 35(33):&nbsp4321-4334, https://www.webofscience.com/wos/woscc/full-record/WOS:000382152100004.[19] 韩柳, 孙宇. 胞外囊泡与癌症. 中国细胞生物学学报[J]. 2016, 38(4):&nbsp347-355, [20] Xu, Qixia, Chiao, Paul, Sun, Yu. Amphiregulin in Cancer: New Insights for Translational Medicine. TRENDS IN CANCERnull. 2016, 2(3):&nbsp111-113, http://dx.doi.org/10.1016/j.trecan.2016.02.002.[21] 孙宇. Tumor microenvironment and cancer therapy resistance.. Cancer letter. 2015, [22] Sun, Yu. Translational Horizons in the Tumor Microenvironment: Harnessing Breakthroughs and Targeting Cures. MEDICINAL RESEARCH REVIEWSnull. 2015, 35(2):&nbsp408-436, https://www.webofscience.com/wos/woscc/full-record/WOS:000349437100005.[23] 孙宇. Landscape and Targeting of the Angpt-Tie System in Current Anticancer Therapy.. Translational Medicine.. 2015, [24] Laberge, RemiMartin, Sun, Yu, Orjalo, Arturo V, Patil, Christopher K, Freund, Adam, Zhou, Lili, Curran, Samuel C, Davalos, Albert R, WilsonEdell, Kathleen A, Liu, Su, Limbad, Chandani, Demaria, Marco, Li, Patrick, Hubbard, Gene B, Ikeno, Yuji, Javors, Martin, Desprez, PierreYves, Benz, Christopher C, Kapahi, Pankaj, Nelson, Peter S, Campisi, Judith. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. NATURE CELL BIOLOGY[J]. 2015, 17(8):&nbsp1049-U416, https://www.webofscience.com/wos/woscc/full-record/WOS:000358847700012.[25] Chen, Fei, Zhuang, Xueqian, Lin, Liangyu, Yu, Pengfei, Wang, Ying, Shi, Yufang, Hu, Guohong, Sun, Yu. New horizons in tumor microenvironment biology: challenges and opportunities. BMC MEDICINEnull. 2015, 13(1):&nbsphttp://dx.doi.org/10.1186/s12916-015-0278-7.[26] Fei Chen, Xinyi Qi, Min Qian, Yue Dai, Yu Sun. Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies?. 蛋白质与细胞:英文版. 2014, 816-826, http://lib.cqvip.com/Qikan/Article/Detail?id=663125382.[27] Sun, Yu, Campisi, Judith, Higano, Celestia, Beer, Tomasz M, Porter, Peggy, Coleman, Ilsa, True, Lawrence, Nelson, Peter S. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. NATURE MEDICINE[J]. 2012, 18(9):&nbsp1359-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000308472300031.[28] Sun, Yu, Nelson, Peter S. Molecular Pathways: Involving Microenvironment Damage Responses in Cancer Therapy Resistance. CLINICAL CANCER RESEARCH[J]. 2012, 18(15):&nbsp4019-4025, https://www.webofscience.com/wos/woscc/full-record/WOS:000307503600004.[29] Sun, Yu, Wong, Nicholas, Guan, Yinghui, Salamanca, Clara M, Cheng, Jung Chien, Lee, Jonathan M, Gray, Joe W, Auersperg, Nelly. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas. INTERNATIONAL JOURNAL OF CANCER[J]. 2008, 123(8):&nbsp1761-1769, https://www.webofscience.com/wos/woscc/full-record/WOS:000259519100004.[30] JeanPhilippe Copp, Christopher K Patil, Francis Rodier, Yu Sun, Denise P Muoz, Joshua Goldstein, Peter S Nelson, PierreYves Desprez, Judith Campisi. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.. PLoS Biology[J]. 2008, 6(12):&nbsp2853-2868, https://doaj.org/article/45144fb904334b6d83ac21f7112cd481.[31] Li, Peixiang, MainesBandiera, Sarah, Kuo, WenLin, Guan, Yinghui, Sun, Yu, Hills, Mark, Huang, Guiqing, Collins, Collin C, Leung, Peter C K, Gray, Joe W, Auersperg, Nelly. Multiple roles of the candidate oncogene ZNF217 in ovarian epithelial neoplastic progression. INTERNATIONAL JOURNAL OF CANCER[J]. 2007, 120(9):&nbsp1863-1873, https://www.webofscience.com/wos/woscc/full-record/WOS:000244972000005.[32] Villenueve, TS, Ma, XC, Sun, Y, Oulton, MM, Oliver, AE, MacRae, TH. Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. CELL STRESS & CHAPERONES[J]. 2006, 11(1):&nbsp71-80, https://www.webofscience.com/wos/woscc/full-record/WOS:000236266000008.[33] Sun, Y, BojikovaFournier, S, MacRae, TH. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS JOURNAL[J]. 2006, 273(5):&nbsp1020-1034, https://www.webofscience.com/wos/woscc/full-record/WOS:000235330700012.[34] 孙宇. MacRae TH.(2005)Small heat shock proteins: molecular structure and chaperone function.. Cellular and Molecular life sciences (CMLS). 2005, [35] Sun, Y, MacRae, TH. Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS JOURNAL[J]. 2005, 272(20):&nbsp5230-5243, https://www.webofscience.com/wos/woscc/full-record/WOS:000232438800012.[36] Ma, XC, Jamil, K, MacRae, TH, Clegg, JS, Russell, JM, Villeneuve, TS, Euloth, M, Sun, Y, Crowe, JH, Tablin, F, Oliver, AE. A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. CRYOBIOLOGY[J]. 2005, 51(1):&nbsp15-28, http://dx.doi.org/10.1016/j.cryobiol.2005.04.007.[37] Sun, Y, MacRae, TH. The small heat shock proteins and their role in human disease. FEBS JOURNALnull. 2005, 272(11):&nbsp2613-2627, https://www.webofscience.com/wos/woscc/full-record/WOS:000229389400001.[38] Sun, Y, Mansour, M, Crack, JA, Gass, GL, MacRae, TH. Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. JOURNAL OF BIOLOGICAL CHEMISTRY[J]. 2004, 279(38):&nbsp39999-40006, http://dx.doi.org/10.1074/jbc.M406999200.[39] Crack, JA, Mansour, M, Sun, Y, MacRae, TH. Functional analysis of a small heat shock/alpha-crystallin protein from Artemia franciscana - Oligomerization and thermotolerance. EUROPEAN JOURNAL OF BIOCHEMISTRY[J]. 2002, 269(3):&nbsp933-942, [40] 孙宇. Regulatory Mechanism of Sorghum to Realize Cytoplasmic Male Sterility (CMS) through Controlling Mitochondria Amounts by HSP70 (Supplement of 6th Congress of Genetics, China).. J. Yunnan Uni. (Natural Sciences). 2002, [41] Bluemn Eric G., Paulson Kelly G., Higgins Erin E., Sun Yu, Nghiem Paul, Nelson Peter S.. Merkel cell polyomavirus is not detected in prostate cancers, surrounding stroma, or benign prostate controls. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 44(2):&nbsp164-166, http://dx.doi.org/10.1016/j.jcv.2008.11.008.[42] Hanxin Liu, Huifang Zhao, Yu Sun. Tumor microenvironment and cellular senescence: Understanding therapeutic resistance and harnessing strategies. Seminars in Cancer Biology.
发表著作
New horizons in tumor microenvironment: challenges and opportunities. Subtitle: updates, insights and, LAMBER T Academic Publishing, 2015-04, 第 1 作者Updated landscape of the tumor microenvironment and targeting strategies in an era of precision medicine, InTechOpen Publishing, 2016-10, 第 1 作者Shedding light on another dark side of the devil in precision oncology: tumor microenvironment and targeted therapies, SM Online Scientific Resources LLC, 2016-12, 第 1 作者Tumor Microenvironment, Therapeutic Resistance, and Personalized Medicine, Pan Stanford Publishing PTE. LTD. CRC Press, 2017-02, 第 1 作者
科研活动
科研项目
( 1 )&nbsp放化疗条件下基质细胞DNA损伤分泌程序的分子调控机制和对癌症复发、转移的功能性影响, 主持, 国家级, 2015-01--2018-12( 2 )&nbsp中组部“青年****”, 主持, 国家级, 2014-01--2016-12( 3 )&nbsp锌指蛋白Zscan4在衰老相关分泌表型发生发展中的作用与机制研究, 主持, 国家级, 2017-01--2020-12( 4 )&nbsp研究肿瘤微环境因素导致耐药、转移机制与干预策略, 主持, 国家级, 2016-09--2020-12( 5 )&nbsp肿瘤微环境-内在驱动分子互动机制与干预途径, 主持, 国家级, 2016-09--2020-12
指导学生
现指导学生陈斐 01 19182 韩柳 02 19182 孙晓晨 02 19182 张博逸 01 19182 高立斌 01 19182
2013 中国科学院大学,网络信息中心.